The mouse and human homologs of DMC1, the yeast meiosis-specific homologous recombination gene, have a common unique form of exon-skipped transcript in meiosis.
نویسندگان
چکیده
Genetic recombination in meiosis plays an important role in generating diversity of genetic information. In yeast an Escherichia coli RecA-like gene, DMC1, is expressed in meiotic prophase and its product co-localizes with Rad51 protein on zygotene chromosomes. We have cloned the mouse and human homologs of the yeast DMC1 gene. The predicted human and mouse DMC1 proteins showed 54.1% sequence identity with yeast Dmc1 protein. The domain II region, highly conserved in the E.coli RecA-like protein family, was also found in the mammalian DMC1 proteins, including the two ATP binding motifs and DNA binding sites with the region. In situ hybridization analysis revealed expression of the mouse Dmc1 gene in testicular germ cells in meiosis; RT-PCR showed expression in embryonal ovaries. These findings suggest that DMC1 plays an important role in meiotic homologous recombination. From both the man and mouse we have isolated an alternative spliced form of Dmc1 cDNA (Dmc1-d), which is deleted for a region between the two motifs involved in nucleotide binding. Since the alternatively spliced Dmc1-d transcript was detected in both male and female germ cells, the encoded protein DMC1-D may have a novel role in mammalian genetic recombination in meiosis.
منابع مشابه
The third exon of the budding yeast meiotic recombination gene HOP2 is required for calcium-dependent and recombinase Dmc1-specific stimulation of homologous strand assimilation.
During meiosis in Saccharomyces cerevisiae, the HOP2 and MND1 genes are essential for recombination. A previous biochemical study has shown that budding yeast Hop2-Mnd1 stimulates the activity of the meiosis-specific strand exchange protein ScDmc1 only 3-fold, whereas analogous studies using mammalian homologs show >30-fold stimulation. The HOP2 gene was recently discovered to contain a second ...
متن کاملDmc1 of Schizosaccharomyces pombe plays a role in meiotic recombination.
We report here a Schizosaccharomyces pombe gene (dmc1(+)) that resembles budding yeast DMC1 in the region immediately upstream of the rad24(+) gene. We showed by northern and Southern blot analysis that dmc1(+) and rad24(+) are co-transcribed as a bicistronic mRNA of 2.8 kb with meiotic specificity, whereas rad24(+) itself is constitutively transcribed as a 1.0-kb mRNA species during meiosis. I...
متن کاملHop2 and Sae3 Are Required for Dmc1-Mediated Double-Strand Break Repair via Homolog Bias during Meiosis
During meiosis, exchange of DNA segments occurs between paired homologous chromosomes in order to produce recombinant chromosomes, helping to increase genetic diversity within a species. This genetic exchange process is tightly controlled by the eukaryotic RecA homologs Rad51 and Dmc1, which are involved in strand exchange of meiotic recombination, with Rad51 participating specifically in mitot...
متن کاملSaccharomyces cerevisiae Dmc1 and Rad51 proteins preferentially function with Tid1 and Rad54 proteins, respectively, to promote DNA strand invasion during genetic recombination.
The Saccharomyces cerevisiae Dmc1 and Tid1 proteins are required for the pairing of homologous chromosomes during meiotic recombination. This pairing is the precursor to the formation of crossovers between homologs, an event that is necessary for the accurate segregation of chromosomes. Failure to form crossovers can have serious consequences and may lead to chromosomal imbalance. Dmc1, a meios...
متن کاملA Dominant, Recombination-Defective Allele of Dmc1 Causing Male-Specific Sterility
DMC1 is a meiosis-specific homolog of bacterial RecA and eukaryotic RAD51 that can catalyze homologous DNA strand invasion and D-loop formation in vitro. DMC1-deficient mice and yeast are sterile due to defective meiotic recombination and chromosome synapsis. The authors identified a male dominant sterile allele of Dmc1, Dmc1(Mei11), encoding a missense mutation in the L2 DNA binding domain tha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nucleic acids research
دوره 24 3 شماره
صفحات -
تاریخ انتشار 1996